Continuous Management of
Multi-Service Applications over
the Cloud-loT Continuum

Giuseppe Bisicchia

Talk for the Information Security Group @ ETH Zurich

Who | Am

| was born in 1998 in Catania, Sicily (Italy)

* During high school, | took part several competitions concerning also
computer science and robotics

* In 2020, | received a BSc degree cum laude in Computer Science from the
University of Pisa

* In 2022, received a MSc degree cum laude in Computer Science (ICT
Solutions Architect) from the University of Pisa and a MSc degree
(9.88/10) in Computer Engineering (Cybersecurity) from the University of
Malaga after pursuing a Double Degree Program and living in Spain

Who | Am

* In 2021, | won 1-year research grant (and in 2022 a 1-year extension) from the
GARR Consortium for issues related to the development of innovative digital
infrastructures and services

* | presented two papers in a national (C/LC) and international (SMARTCOMP)
conferences

* | published an article in the international Journal of Logic and Computation

* | am a mentor for the Pisa CoderDojo and | organised several educational
workshop, | was first a journalist intern and then | worked as editor for a

scientific dissemination site

Continuous Management of
Multi-Service Applications over
the Cloud-loT Continuum

Giuseppe Bisicchia

Talk (now for real) for the Information Security Group @ ETH Zurich

Context: Multi-Service
Applications

Context: Multi-Service
Applications

100+ interacting (micro)services

m Ziirich

Context: Multi-Service
Applications

strictly
hardware and
software
requirements

QoS

100+ interacting (micro)services

m Ziirich

Context: Cloud-loT Infrastructures

cloud
nodes

e
™ V" 1 i-‘ "
‘\ . ,/”-‘!‘ s
ot g ! ! ’I’I .“-l'il';

IoT
nodes

Context: Cloud-loT Infrastructures

edge
nodes

Context: Cloud-loT Infrastructures

edge
nodes

1000+ highly pervasive, distributed and heterogeneous nodes

Context: Cloud-loT Infrastructures

edge
nodes

node failures
or
— overloading,
traffic
congestion,
disconnections

1000+ highly pervasive, distributed and heterogeneous nodes

Research Problem

Cloud-loT Infrastructures 100+ interacting (micro)services

node failures
or
overloading
. —
traffic
congestion,
disconnections

strictly
hardware and
L software
requirements,

QoS

1000+ highly pervasive, distributed Multi-Service Applications
and heterogeneous nodes

Research Problem

Cloud-1oT Infrastructures 100+ interacting (micro)services

| - : . .
ne of the existing orchestrators supports a
continuous, QoS- and context-aware

or

overloading_ management of microservices on Cloud-loT

congestion,

infrastructures in continuity with the ClI/CD
pipeline

B5836 5080
36060085

000

-

0386688
00000000

1000+ highly pervasive, distributed Multi-Service Applications
and heterogeneous nodes

strictly
hardware and
L software

requirements,

QoS

&

Design and develop a
next-gen orchestrator
for a continuous,
QoS-compliant
management of multi-
service applications
on Cloud-loT
infrastructures

m Ziirich

Continuous Reasoning

'1\, w/_

_f:O

continuous and incremental
formal analysis

Continuous Reasoning

'1\, w/_
_f:O .;ﬂj

continuous and incremental focussing on the
formal analysis latest changes

Continuous Reasoning

'1&, /= A
20, . L)

continuous and incremental focussing on the reuse previously
formal analysis latest changes computed results

Continuous Reasoning

'1\, w/= A
_r:O .;ﬂj (A

continuous and incremental focussing on the reuse previously
formal analysis latest changes computed results

~ FogBrainX is the core of a Continuous Reasoning
g%s FogBramx | €NBINE for making informed management decisions

for multi-service applications on Cloud-loT
infrastructures

Stefano Forti, Giuseppe Bisicchia, and Antonio Brogi. Declarative Continuous Reasoning in
the Cloud-loT Continuum. Journal of Logic and Computation, 2022.

FogBrainX

FogBrainX

as it is Prolog code: more
concise, easier to
understand and maintain
w.r.t existing procedural
solutions

as it derives proofs by
relying on Prolog and can
explain why a certain
management decision was
taken at runtime

FogBrainX

as it is Prolog code: more
concise, easier to
understand and maintain
w.r.t existing procedural
solutions

as it derives proofs by
relying on Prolog and can
explain why a certain
management decision was
taken at runtime

FogBrainX

as it exploits continuous
reasoning to reduce the size
of the problem instance only
to those application services
in need for attention

as it is Prolog code: more
concise, easier to
understand and maintain
w.r.t existing procedural
solutions

E_B di-unipi-socc/fogbrain is licensed under the as it derives prOOfS by

Apache License 2.0 relying on Prolog and can
Available at: explain why a certain
https://github.com/di-unipi- management decision was
socc/fogbrainx taken at runtime

FogBrainX

as it exploits continuous
reasoning to reduce the size
of the problem instance only
to those application services
in need for attention

as it is Prolog code: more
concise, easier to
understand and maintain
w.r.t existing procedural
solutions

https://github.com/di-unipi-socc/fogbrainx

The Orchestrator

managing

FogBrainX

The Orchestrator

testing
managing
o FogBrainX
g0
\
-a?Q \i\@
Agile software
development -
u
< / > u management decisions

integrating
coding

The Orchestrator

testing

managing

FogBrainX Q FogWon2

\ o Q?o
QQQ\\- i\"‘a{\ "’f (-'o
o g, Cor
Agile software o)
development ‘-
< / > U management decisions

) Mntegrating Cloud-loT
coding .
infrastructure

m Ziirich

The Orchestrator

testing

managing

FogBrainX Q FogWonz

o
cﬁa" o
'aQQ ﬁ\‘-‘a'{\ aﬁ‘
Agile software mana
gement
development - decisions
< / > U acting
) integrating / Cloud-loT
coding E . FOQArm ,a,;\'aﬁz@{\& infrastructure
ﬁ‘df“

E ' H Ziirich

FogArm

'
) [FogMon }

T FogArm J\
Applications s
((% > [FogWatcher } \@

~— Web GUI

“/'

= Nodes

FogArm’s WebGUI:

Select a Node ngf_i(l—garr—na ¥ Selected node node16-garr-na

Select Link (From) nodeO-garr-ct1 ¥ Online

Select Link (To) node19-garr-pal - Free Hardware

Last Update 5/6/2022, 19:13:34

Total Nodes

Free Hardware History

5 5 524
5238

5236
524
528
Nodes' History 185500 19.00:00 19.05:00 19:14:00
58
57 loT Devices:
56 No loT Devices Available
55
173800 180800 18:38.00

19140 goftware:

o docker

Selected Link (From)

Selected Link (To)

Online

node0-garr-ct1

node19-garr-pat

Bandwidth

34.73

Latency

32

18:55.00

kL)

30

25

20
18:55:00

Bandwidth

19:00.00 19:05:00

Latency

19.00:00 19:05:00

Last Update 5/6/2022, 19:04:27

Deployed on the Selected
Node

docker-swarm-demo-2_products_db
o docker-swarm-demo-2_invoices
o docker-swarm-demo-2_invoices_db
¢ docker-swarm-demo-2_webapp
¢ docker-swarm-demo-2_api-gateway

19:14:00

191490 Cyrrent Placement:

* docker-swarm-demo-
1_products_db on node19-garr-
pal

* docker-swarm-demo-1_invoices on
node19-garr-pal

¢ docker-swarm-demo-
2_products_db on node16-garr-na

* docker-swarm-demo-2_invoices on
node16-garr-na

* docker-swarm-demo-
2_invoices_db on node16-garr-na

» docker-swarm-demo-2_webapp on

= Applications

FogArm’s WebGUI: Applica

Online Applications
Total Services
Services History
30
20
10
0
17:00:00 19:00:00

21:00:00

Select Application

Last Update 5/6/2022, 20:58:26

Online Applications:
* docker-swarm-demo-0

* docker-swarm-demo-1
* docker-swarm-demo-2

Current Placement:

docker-swarm-demo-
2_customers_db on node19-garr-
pal
docker-swarm-demo-2_products
on node19-garr-patl
docker-swarm-demo-2_customers
on node19-garr-patl
docker-swarm-demo-
1_customers_db on node16-garr-
na

o docker-swarm-demo-1_invoices on
node17-garr-na

docker-swarm-de...

version: "3.2'
sernvices:
customers
build: customers-service
image: embair/swarm-
demo:customers
environment:

services
customers:
hardware: 2
links:
customers_db:
bandwidth: 7
latency: 500

- REDIS_HOST=customers_db

links:
- customers_db

cusiomers_db:
image: redis

products:
build: products-service
image. embair/swarm-
demo:products
envirenment:

SEND

REFRESH

customers_db:
hardware: 3

products:
hardware: 2
links:
products_db-
bandwidth: 7
latency: 100

CANCEL SEND

REFRESH

CANCEL

docker-swarm-
demo-0

Selected
Application
Last Update 5/6/2022, 20:54:52

Uptime
0 days, 0 hours and 15 minutes

Matched
EXECUTE

REMOVE

Desired Placement:

customers on nodel14-garr-pa’l
customers_db on node0-garr-pa1
products on node14-garr-pal
products_db on node0-garr-ct1
invoices on node13-garr-ct1
invoices_db on node0-garr-pat
api-gateway on node0-garr-ct1

Current Placement:

= customers on nodel14-garr-pa’l

= products on nodel14-garmr-pal
invoices on node13-garr-ct1
invoices_db on node0-garr-pat

* customers_db on node0-garr-pat1
api-gateway on node0-garr-ct1

» products_db on node0-garr-ct1

Declaring Infrastructure
Capabilities

NodeID1

TCapsl

HwCaps1l
SwCapsl

node(NodeIdl, SwCapsl, HwCapsl, TCapsl).

Declaring Infrastructure
Capabilities

NodeId2 NodeIdl

HwCaps2 HwCaps1
SwCaps?2 SwCapsl

node(NodeIdl, SwCapsl, HwCapsl, TCapsl).
node(NodeId2, SwCaps2, HwCaps2, []).

m Ziirich

Declaring Infrastructure
Capabilities

NodeId2 NodeIdl

HwCaps2 HwCaps1l
SwCaps?2 SwCapsl

node(NodeIdl, SwCapsl, HwCapsl, TCapsl).
node(NodeId2, SwCaps2, HwCaps2, []).
link(NodeIdl, Nodeld2, FeatLatl2, FeatBwl2).

m Ziirich

Declaring Infrastructure
Capabilities

NodeId2 NodeIdl
FeatlLatl2, FeatBw12

XX} X

BT s CTTRTY FIITY LTI
. . .

HwCaps2 HwCaps1l
SwCaps2 SwCapsl

node(NodeIdl, SwCapsl, HwCapsl, TCapsl).
node(NodeId2, SwCaps2, HwCaps2, []).
link(NodeIdl, Nodeld2, FeatLatl2, FeatBwl2).
link(NodeId2, Nodeldl, FeatLat2l, FeatBw2l).

m Ziirich

Declaring Application
Requirements

ServicelDl1 TRegs1

HWReqgs1
SWReqs1

service(ServiceIDl, SwReqsl, HwReqsl, TReqsl).

Declaring Application
Requirements

ServicelD2 ServicelD1
HWReqs2 é HWReqgs1
SWReqs2 : SWReqgs1

service(ServiceID1l, SwReqsl, HwReqgsl, TRegsl).
service(ServiceID2, SwReqs2, HwReqgs2, []).

m Ziirich

Declaring Application
Requirements

ServiceID2 ServicelIDl1

LatReql2, BwReql2

HWReqs2 E é HWReqgs1
SWReqs2 : : SWReqgs1

service(ServiceID1l, SwReqsl, HwReqsl, TReqsl).
service(ServicelID2, SwReqs2, HwReqgs2, []).
s2s(ServicelIDl, ServicelID2, LatReql2, BwReql2).

m Ziirich

Declaring Application
Requirements

LatReq21, BwReq21

ServiceID2 ServicelIDl1

<€
LatReql2, BwReql2

HWReqs2 E é HWReqgs1
SWReqs2 : : SWReqgs1

service(ServiceID1l, SwReqsl, HwReqsl, TReqsl).
service(ServicelID2, SwReqs2, HwReqgs2, []).

s2s(ServicelIDl, ServicelID2, LatReql2, BwReql2).
s2s(ServicelID2, ServicelDl, LatReq2l, BwReqg2l).

m Ziirich

Triggers

Changes in services
requirements

m Ziirich

Triggers

00—
00—
00—
Inﬁ:strucTt'Jral Changes in services
changes requirements

m Ziirich

Triggers

00—
00 ——
00 ——
Inft:strucTt'Jral Changes in services Addition/removal of
changes requirements services

m Ziirich

FogBrainX Reasoning

1. First deployment, via a generate & test strategy

fogBrainX(A,Placement) :-
\+ deployment(A, ,), placement(A,Placement).

FogBrainX Reasoning

1. First deployment, via a generate & test strategy,
and
2. Management decisions, via continuous reasoning

fogBrainX(A,Placement) :-
\+ deployment(A, ,), placement(A,Placement).
fogBrainX(A,NewPlacement) :-
deployment(A,P,Alloc),
newServices(P,NewServices),
reasoningStep(P,Alloc,NotOkServices,[],0kPlacement),
append(NewServices,NotOkServices,ServicesToPlace),
placement(ServicesToPlace,OkPlacement,Alloc,NewPlacement),
allocatedResources(NewPlacement,NewAlloc),

retract(deployment(A, ,)), assert(deployment(A,NewPlacement,NewAlloc)).

FogBrainX Reasoning Step

1. Ifthe service is removed, remove it form the placement

reasoningStep([on(S,)|Ps], (AllocHW,AllocBW),KOs,POk,StableP) :-
\+ service(S, , ,),

reasoningStep(Ps, (AllocHW,AllocBW),KOs,POk,StableP).

FogBrainX Reasoning Step

1. Ifthe service is removed, remove it form the placement
2. Ifthe service’s requirements are satisfied, keep it’s
placement

reasoningStep([on(S,)|Ps], (AllocHW,AllocBW),KOs,POk,StableP) :-
\+ service(S, , ,),
reasoningStep(Ps, (AllocHW,AllocBW),KOs,POk,StableP).
reasoningStep([on(S,N)|Ps], (AllocHW,AllocBW), KOs, POk,StableP) :-
nodeOk (S,N,POk,AllocHW), 1inksOk(S,N,POk,AllocBW),!,
reasoningStep(Ps, (AllocHW,AllocBW),KOs, [on(S,N)|POk],StableP).

FogBrainX Reasoning Step

1. Ifthe service is removed, remove it form the placement

2. Ifthe service’s requirements are satisfied, keep it’s
placement

3. Otherwise, re-place it

reasoningStep([on(S,)|Ps], (AllocHW,AllocBW),KOs,POk,StableP) :-
\+ service(S, , ,),
reasoningStep(Ps, (AllocHW,AllocBW),KOs,POk,StableP).
reasoningStep([on(S,N)|Ps], (AllocHW,AllocBW), KOs, POk,StableP) :-
nodeOk (S,N,POk,AllocHW), 1inksOk(S,N,POk,AllocBW),!,
reasoningStep(Ps, (AllocHW,AllocBW),KOs, [on(S,N)|POk],StableP).
reasoningStep([on(S,) |Ps], (AllocHW,AllocBW),[S|KOs],POk,StableP) :-
reasoningStep(Ps, (AllocHW,AllocBW),KOs,POk,StableP).
reasoningStep([], ,[],P,P).

Default Policies

Node Requirements (SW, loT and cumulative HW)

nodeOk(S,N,P,AllocHW) :-
service(S,SWReqgs,HWReqgs,IoTReqs),
node (N, SWCaps,HWCaps,IoTCaps),
swReqsOk (SWReqgs, SWCaps),
thingReqsOk(IoTReqgs, IoTCaps),
hwOk (N, HWCaps ,HWReqs,P,Al1locHW)

Default Policies

Node Requirements (SW, loT and cumulative HW)

nodeOk(S,N,P,AllocHW) :-
service(S,SWReqgs,HWReqgs,IoTReqs),
node (N, SWCaps,HWCaps,IoTCaps),
swReqsOk (SWReqgs, SWCaps),
thingReqsOk(IoTReqgs, IoTCaps),
hwOk (N, HWCaps ,HWReqs,P,Al1locHW)

)

Links Requirements (latency and cumulative bandwidth)

linksOk(S,N,P,AllocBW) :-

findall((N1N2,ReqlLat), distinct(relevant(S,N,P,N1N2,ReqlLat)), N2Ns),
latencyOk(N2Ns),

findall(NIN2, distinct(member((N1IN2,ReqlLat),N2Ns)), N1N2s), bwOk(N1N2s,
AllocBW, [on(S,N)|P]).

FogBrainX Placer

Exploiting generate & test (with backtracking)
1. Checks node requirements for service S on node N

placement([S|Ss],P, (AllocHW,AllocBW),Placement) :-
nodeOk(S,N,P,AllocHW), 1inksOk(S,N,P,AllocBW),
placement(Ss,[on(S,N)|P], (AllocHW,AllocBW),Placement).
placement([],P, ,P).

2. Checks link requirements for all (placed) services
communicating with S
3. Repeated until all services have been placed

Continuous Reasoning as a
Booster

SockShop Use Case

7 éws*\u

\ S 3
- N R , - A
ey R_s A
- wa

0

~F

——

—

é) &

_\Gl . G2 5 ?_3/:‘/

S @

ca P '.g o
Computef Science
Mﬂ_

(a) Use case infrastructure.

SockShop Use Case

o
e 4 f sam e Front-end
—— ,
/7 aws _ S S e el
COYE =
v o/ R ‘ rk i .
2/ ’

" =

' e ‘ | 1 I 1
—— = v, Q :
~ ror1]
A\ Azure - , / j | 1 Order Catalogue Cart User Payment
> = o y Mag) A< o
e’ 7> Save, wongodh

- y ! camre
Gl G2 G3 vy : -
\ A L i1 {

12
| [§
¥ .
— [hae’] N 1 et =} Shippin 1 SV Queue S50 e, § Ao Queuve-
[@ ¢ 2 » |] PRing Master
L 4 \ .

University of Pha < 1. PR 10
Ostacentre N D4 | e rabhiteg e

(a) Use case infrastructure. (b) Use case application specification.

SockShop Use Case

FogBrainX reduced execution
times by 20%

Execution Time (s)
=] = = N N b
(V] o (%3] (=] ()] o

o
o

FogBrainX Scalability Assessment

]
-o- 50% J
e 40% y
’ B
-e- 30% g
S
20% 'y
/ 7
-o- 10% s
)
e
/ i
s o W
s [/
s I’IJ'I"
’l f#al
s
, oy
il ’f, (]
& A
-~ 2=
- "c“ e
1’, -2F ’/'
PO ST
PR f.-=%;§= 2=
T ; ‘ . I |
40 80 160 320 640 1280

Infrastructure Size

(a) Exhaustive placement

0.035 1

0.030 1

ime (s)

= 0.020 |

Execution

o
(=]
=
(=]

0.005 |

0.000 1

0.025 1

0.015 1

-+~ 50% I
- 40% P
—e- 30% ;oA
20% FEEA
-e- 10% / \

Infrastructure Size

(b) Continuous Reasoning

- 50% »
60001 -- 40% 7
/
- 30% ;
5000' 20% /r
o -+ 10%
S 4000+ .)
o ” }t ,.
Q S
33000- e /’ /’l »
n 7)’, /; /1
2000+ ," ,,- /s /tl
o &
1000 - e
e
0 @®======= ghasE===of=-
40 80 160 320 640 1280

Infrastructure Size

(c) Speed-up.

FogBrainX Scalability Assessment

FogBrainX speed-up by 3000x
to 6000x

Continuous Reasoning
Assessment

- - . 100 - - - .
B Continuous Reasoning 213.22 EEm Continuous Reasoning %.77
200 W= Exhaustive Search B Exhaustive Search
178.34
175 4 80 -
150
2 60
n 125 n
g S
-
(%) m
& 100 - g
40 .
75 1
50 -
20 A
25
0- 0-
Execution Times ToMigrate%

(a) Average times. (b) Average migrations.

Continuous Reasoning
Assessment

FogArm saved 33% of
migrations and reduced
execution times by 15%

Conclusions

FogBrainX

* FogArm is a prototype of a next-
gen orchestrator for the

* FogBrainX s a declarative engine continuous QoS-compliant
to support application management of multiservice
management via continuous applications on geographically
reasoning, considering both distributed Cloud-loT
variations in the infrastructure infrastructures.

and changes in the application e Scales ub to tens of nodes and

requirements. hundreds of services saving 15%
* FogBrainX speed-up placement of execution time and migrating

decision-making execution time 33% fewer services.

in the order of 3000x to 6000x,

even in the presence of thousand

of nodes and high variation rates.

* Speed-up increases as the
infrastructure size increases. FogArI I l

Future Work

P
111

Support data
migrations

Future Work

0/

Support scaling and
/@'\ adaptation of services

Support data
migrations

Future Work

/
Support scaling and
/@'\ adaptation of services
111

Support data

migrations i

Cost models &
heuristics

Future Work

/
Support scaling and
/@'\ adaptation of services
111

Support data Theoretical
migrations =1 compositional model

Cost models &
heuristics

m Ziirich

Thank You

