Continuous Management of Multi-Service Applications over the Cloud-IoT Continuum

Giuseppe Bisicchia

Talk for the Information Security Group @ ETH Zurich

Who I Am

- I was born in 1998 in Catania, Sicily (Italy)
- During high school, I took part several competitions concerning also computer science and robotics
- In 2020, I received a BSc degree cum laude in Computer Science from the University of Pisa
- In 2022, received a MSc degree cum laude in Computer Science (ICT Solutions Architect) from the University of Pisa and a MSc degree (9.88/10) in Computer Engineering (Cybersecurity) from the University of Malaga after pursuing a Double Degree Program and living in Spain

Who I Am

- In 2021, I won 1-year research grant (and in 2022 a 1-year extension) from the GARR Consortium for issues related to the development of innovative digital infrastructures and services
- I presented two papers in a national (CILC) and international (SMARTCOMP)
 conferences
- I published an article in the international Journal of Logic and Computation
- I am a mentor for the Pisa CoderDojo and I organised several educational workshop, I was first a journalist intern and then I worked as editor for a scientific dissemination site

Continuous Management of Multi-Service Applications over the Cloud-IoT Continuum

Giuseppe Bisicchia

Talk (now for real) for the Information Security Group @ ETH Zurich

Context: Multi-Service Applications

Context: Multi-Service Applications

Context: Multi-Service Applications

Research Problem

Cloud-IoT Infrastructures

cloud nodes edge nodes disconnections IoT node

node failures

overloading.

traffic

congestion,

1000+ highly pervasive, distributed and heterogeneous nodes

100+ interacting (micro)services

Multi-Service Applications

strictly

software

QoS

Research Problem

Design and develop a next-gen orchestrator for a continuous, QoS-compliant management of multiservice applications on Cloud-IoT infrastructures

FogBrainX is the core of a Continuous Reasoning engine for making informed management decisions for multi-service applications on Cloud-IoT infrastructures

Stefano Forti, Giuseppe Bisicchia, and Antonio Brogi. Declarative Continuous Reasoning in the Cloud-IoT Continuum. Journal of Logic and Computation, 2022.

FogBrain X

FogBrainX

declarative

as it is Prolog code: more concise, easier to understand and maintain w.r.t existing procedural solutions

explainable

as it derives proofs by relying on Prolog and can explain why a certain management decision was taken at runtime

FogBrain X

declarative

as it is Prolog code: more concise, easier to understand and maintain w.r.t existing procedural solutions

explainable

as it derives proofs by relying on Prolog and can explain why a certain management decision was taken at runtime

FogBrainX

declarative

as it is Prolog code: more concise, easier to understand and maintain w.r.t existing procedural solutions

scalable

as it exploits continuous reasoning to reduce the size of the problem instance only to those application services in need for attention

open-source

di-unipi-socc/fogbrain is licensed under the Apache License 2.0

Available at:

https://github.com/di-unipisocc/fogbrainx

explainable

as it derives proofs by relying on Prolog and can explain why a certain management decision was taken at runtime

FogBrainX

declarative

as it is Prolog code: more concise, easier to understand and maintain w.r.t existing procedural solutions

scalable

as it exploits continuous reasoning to reduce the size of the problem instance only to those application services in need for attention

FogArm

FogArm's WebGUI: Nodes

FogArm's WebGUI: Applications

 \equiv Applications

node(NodeId1, SwCaps1, HwCaps1, TCaps1).
node(NodeId2, SwCaps2, HwCaps2, []).


```
node(NodeId1, SwCaps1, HwCaps1, TCaps1).
node(NodeId2, SwCaps2, HwCaps2, []).
link(NodeId1, NodeId2, FeatLat12, FeatBw12).
```



```
node(NodeId1, SwCaps1, HwCaps1, TCaps1).
node(NodeId2, SwCaps2, HwCaps2, []).
link(NodeId1, NodeId2, FeatLat12, FeatBw12).
link(NodeId2, NodeId1, FeatLat21, FeatBw21).
```


Declaring Application Requirements

Declaring Application Requirements

ServiceID2

HWReqs2
SWReqs2

service(ServiceID1, SwReqs1, HwReqs1, TReqs1).
service(ServiceID2, SwReqs2, HwReqs2, []).

Declaring Application Requirements

service(ServiceID1, SwReqs1, HwReqs1, TReqs1).
service(ServiceID2, SwReqs2, HwReqs2, []).
s2s(ServiceID1, ServiceID2, LatReq12, BwReq12).

Declaring Application Requirements


```
service(ServiceID1, SwReqs1, HwReqs1, TReqs1).
service(ServiceID2, SwReqs2, HwReqs2, []).
s2s(ServiceID1, ServiceID2, LatReq12, BwReq12).
s2s(ServiceID2, ServiceID1, LatReq21, BwReq21).
```


Triggers

Changes in services requirements

Triggers

Triggers

FogBrainX Reasoning

1. First deployment, via a generate & test strategy

FogBrainX Reasoning

- First deployment, via a generate & test strategy, and
- 2. Management decisions, via continuous reasoning

```
fogBrainX(A,Placement) :-
    \+ deployment(A,_,_), placement(A,Placement).

fogBrainX(A,NewPlacement) :-
    deployment(A,P,Alloc),
    newServices(P,NewServices),
    reasoningStep(P,Alloc,NotOkServices,[],OkPlacement),
    append(NewServices,NotOkServices,ServicesToPlace),
    placement(ServicesToPlace,OkPlacement,Alloc,NewPlacement),
    allocatedResources(NewPlacement,NewAlloc),
    retract(deployment(A,_,_)), assert(deployment(A,NewPlacement,NewAlloc)).
```


FogBrainX Reasoning Step

1. If the service is removed, remove it form the placement

```
reasoningStep([on(S,_)|Ps],(AllocHW,AllocBW),KOs,POk,StableP) :-
    \+ service(S,_,_,_),
    reasoningStep(Ps,(AllocHW,AllocBW),KOs,POk,StableP).
```


FogBrainX Reasoning Step

- 1. If the service is removed, remove it form the placement
- 2. If the service's requirements are satisfied, keep it's placement

```
reasoningStep([on(S,_)|Ps],(AllocHW,AllocBW),KOs,POk,StableP) :-
    \+ service(S,_,_,_),
    reasoningStep(Ps,(AllocHW,AllocBW),KOs,POk,StableP).
reasoningStep([on(S,N)|Ps],(AllocHW,AllocBW), KOs, POk,StableP) :-
    nodeOk(S,N,POk,AllocHW), linksOk(S,N,POk,AllocBW),!,
    reasoningStep(Ps,(AllocHW,AllocBW),KOs,[on(S,N)|POk],StableP).
```


FogBrainX Reasoning Step

- 1. If the service is removed, remove it form the placement
- 2. If the service's requirements are satisfied, keep it's placement
- 3. Otherwise, re-place it

```
reasoningStep([on(S,_)|Ps],(AllocHW,AllocBW),KOs,POk,StableP) :-
    \+ service(S,_,_,),
    reasoningStep(Ps,(AllocHW,AllocBW),KOs,POk,StableP).

reasoningStep([on(S,N)|Ps],(AllocHW,AllocBW), KOs, POk,StableP) :-
    nodeOk(S,N,POk,AllocHW), linksOk(S,N,POk,AllocBW),!,
    reasoningStep(Ps,(AllocHW,AllocBW),KOs,[on(S,N)|POk],StableP).

reasoningStep([on(S,_)|Ps],(AllocHW,AllocBW),[S|KOs],POk,StableP) :-
    reasoningStep(Ps,(AllocHW,AllocBW),KOs,POk,StableP).
```


Default Policies

Node Requirements (SW, IoT and cumulative HW)

```
•••
```

```
nodeOk(S,N,P,AllocHW) :-
    service(S,SWReqs,HWReqs,IoTReqs),
    node(N,SWCaps,HWCaps,IoTCaps),
    swReqsOk(SWReqs,SWCaps),
    thingReqsOk(IoTReqs,IoTCaps),
    hwOk(N,HWCaps,HWReqs,P,AllocHW)
```


Default Policies

Node Requirements (SW, IoT and cumulative HW)


```
nodeOk(S,N,P,AllocHW) :-
    service(S,SWReqs,HWReqs,IoTReqs),
    node(N,SWCaps,HWCaps,IoTCaps),
    swReqsOk(SWReqs,SWCaps),
    thingReqsOk(IoTReqs,IoTCaps),
    hwOk(N,HWCaps,HWReqs,P,AllocHW)
```

Links Requirements (latency and cumulative bandwidth)


```
linksOk(S,N,P,AllocBW) :-
    findall((N1N2,ReqLat), distinct(relevant(S,N,P,N1N2,ReqLat)), N2Ns),
latencyOk(N2Ns),
    findall(N1N2, distinct(member((N1N2,ReqLat),N2Ns)), N1N2s), bwOk(N1N2s,AllocBW, [on(S,N)|P]).
```


FogBrainX Placer

Exploiting generate & test (with backtracking)

1. Checks node requirements for service S on node N


```
placement([S|Ss],P,(AllocHW,AllocBW),Placement) :-
    nodeOk(S,N,P,AllocHW), linksOk(S,N,P,AllocBW),
    placement(Ss,[on(S,N)|P],(AllocHW,AllocBW),Placement).
placement([],P,_,P).
```

- Checks link requirements for all (placed) services communicating with S
- 3. Repeated until all services have been placed

Continuous Reasoning as a

Booster

SockShop Use Case

(a) Use case infrastructure.

SockShop Use Case

(a) Use case infrastructure.

(b) Use case application specification.

SockShop Use Case

(a) Use case infrastructure.

(b) Use case application specification.

FogBrainX Scalability Assessment

(a) Exhaustive placement

(b) Continuous Reasoning

(c) Speed-up.

FogBrainX Scalability Assessment

Continuous Reasoning Assessment

(a) Average times.

(b) Average migrations.

Continuous Reasoning Assessment

Conclusions

FogBrainX

- FogBrainX is a declarative engine to support application management via continuous reasoning, considering both variations in the infrastructure and changes in the application requirements.
- FogBrainX speed-up placement decision-making execution time in the order of 3000× to 6000×, even in the presence of thousand of nodes and high variation rates.
- Speed-up increases as the infrastructure size increases.

- FogArm is a prototype of a nextgen orchestrator for the continuous QoS-compliant management of multiservice applications on geographically distributed Cloud-IoT infrastructures.
- Scales up to tens of nodes and hundreds of services saving 15% of execution time and migrating 33% fewer services.

Thank You

