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Research Problem

Cloud-1oT Infrastructures 100+ interacting (micro)services
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ne of the existing orchestrators supports a
continuous, QoS- and context-aware
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Design and develop a
next-gen orchestrator
for a continuous,
QoS-compliant
management of multi-
service applications
on Cloud-loT
infrastructures
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continuous and incremental focussing on the reuse previously
formal analysis latest changes computed results

~ FogBrainX is the core of a Continuous Reasoning
g%s FogBramx | €NBINE for making informed management decisions

for multi-service applications on Cloud-loT
infrastructures

Stefano Forti, Giuseppe Bisicchia, and Antonio Brogi. Declarative Continuous Reasoning in
the Cloud-loT Continuum. Journal of Logic and Computation, 2022.
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as it exploits continuous
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of the problem instance only
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in need for attention
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E_B di-unipi-socc/fogbrain is licensed under the as it derives prOOfS by

Apache License 2.0 relying on Prolog and can
Available at: explain why a certain
https://github.com/di-unipi- management decision was
socc/fogbrainx taken at runtime

FogBrainX

as it exploits continuous
reasoning to reduce the size
of the problem instance only
to those application services
in need for attention

as it is Prolog code: more
concise, easier to
understand and maintain
w.r.t existing procedural
solutions
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= Nodes

FogArm’s WebGUI:

Select a Node ngf_i(l—garr—na ¥  Selected node node16-garr-na

Select Link (From)  nodeO-garr-ct1 ¥  Online

Select Link (To)  node19-garr-pal - Free Hardware

Last Update 5/6/2022, 19:13:34

Total Nodes

Free Hardware History

5 5 524
5238

5236
524
528
Nodes' History 185500 19.00:00 19.05:00 19:14:00
58
57 loT Devices:
56 No loT Devices Available
55
173800 180800  18:38.00

19140 goftware:

o docker

Selected Link (From)

Selected Link (To)

Online

node0-garr-ct1

node19-garr-pat

Bandwidth

34.73

Latency

32

18:55.00

kL)

30

25

20
18:55:00

Bandwidth

19:00.00 19:05:00

Latency

19.00:00 19:05:00

Last Update 5/6/2022, 19:04:27

Deployed on the Selected
Node

docker-swarm-demo-2_products_db
o docker-swarm-demo-2_invoices
o docker-swarm-demo-2_invoices_db
¢ docker-swarm-demo-2_webapp
¢ docker-swarm-demo-2_api-gateway

19:14:00

191490 Cyrrent Placement:

* docker-swarm-demo-
1_products_db on node19-garr-
pal

* docker-swarm-demo-1_invoices on
node19-garr-pal

¢ docker-swarm-demo-
2_products_db on node16-garr-na

* docker-swarm-demo-2_invoices on
node16-garr-na

* docker-swarm-demo-
2_invoices_db on node16-garr-na

» docker-swarm-demo-2_webapp on




= Applications

FogArm’s WebGUI: Applica

Online Applications
Total Services
Services History
30
20
10
0
17:00:00 19:00:00

21:00:00

Select Application

Last Update 5/6/2022, 20:58:26

Online Applications:
* docker-swarm-demo-0

* docker-swarm-demo-1
* docker-swarm-demo-2

Current Placement:

docker-swarm-demo-
2_customers_db on node19-garr-
pal
docker-swarm-demo-2_products
on node19-garr-patl
docker-swarm-demo-2_customers
on node19-garr-patl
docker-swarm-demo-
1_customers_db on node16-garr-
na

o docker-swarm-demo-1_invoices on
node17-garr-na

docker-swarm-de...

version: "3.2'
sernvices:
customers
build: customers-service
image: embair/swarm-
demo:customers
environment:

services
customers:
hardware: 2
links:
customers_db:
bandwidth: 7
latency: 500

- REDIS_HOST=customers_db

links:
- customers_db

cusiomers_db:
image: redis

products:
build: products-service
image. embair/swarm-
demo:products
envirenment:

SEND

REFRESH

customers_db:
hardware: 3

products:
hardware: 2
links:
products_db-
bandwidth: 7
latency: 100

CANCEL SEND

REFRESH

CANCEL

docker-swarm-
demo-0

Selected
Application
Last Update 5/6/2022, 20:54:52

Uptime
0 days, 0 hours and 15 minutes

Matched
EXECUTE

REMOVE

Desired Placement:

customers on nodel14-garr-pa’l
customers_db on node0-garr-pa1
products on node14-garr-pal
products_db on node0-garr-ct1
invoices on node13-garr-ct1
invoices_db on node0-garr-pat
api-gateway on node0-garr-ct1

Current Placement:

= customers on nodel14-garr-pa’l

= products on nodel14-garmr-pal
invoices on node13-garr-ct1
invoices_db on node0-garr-pat

* customers_db on node0-garr-pat1
api-gateway on node0-garr-ct1

» products_db on node0-garr-ct1
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NodeId2 NodeIdl

HwCaps2 HwCaps1
SwCaps?2 SwCapsl

node(NodeIdl, SwCapsl, HwCapsl, TCapsl).
node(NodeId2, SwCaps2, HwCaps2, []).
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Declaring Infrastructure
Capabilities

NodeId2 NodeIdl
FeatlLatl2, FeatBw12
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HwCaps2 HwCaps1l
SwCaps2 SwCapsl

node(NodeIdl, SwCapsl, HwCapsl, TCapsl).
node(NodeId2, SwCaps2, HwCaps2, []).
link(NodeIdl, Nodeld2, FeatLatl2, FeatBwl2).
link(NodeId2, Nodeldl, FeatLat2l, FeatBw2l).
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Declaring Application
Requirements

ServicelDl1 TRegs1

HWReqgs1
SWReqs1

service(ServiceIDl, SwReqsl, HwReqsl, TReqsl).



Declaring Application
Requirements

ServicelD2 ServicelD1
HWReqs2 é HWReqgs1
SWReqs2 : SWReqgs1

service(ServiceID1l, SwReqsl, HwReqgsl, TRegsl).
service(ServiceID2, SwReqs2, HwReqgs2, []).
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Declaring Application
Requirements

ServiceID2 ServicelIDl1

LatReql2, BwReql2

HWReqs2 E é HWReqgs1
SWReqs2 : : SWReqgs1

service(ServiceID1l, SwReqsl, HwReqsl, TReqsl).
service(ServicelID2, SwReqs2, HwReqgs2, []).
s2s(ServicelIDl, ServicelID2, LatReql2, BwReql2).
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Declaring Application
Requirements

LatReq21, BwReq21

ServiceID2 ServicelIDl1

<€
LatReql2, BwReql2

HWReqs2 E é HWReqgs1
SWReqs2 : : SWReqgs1

service(ServiceID1l, SwReqsl, HwReqsl, TReqsl).
service(ServicelID2, SwReqs2, HwReqgs2, []).

s2s(ServicelIDl, ServicelID2, LatReql2, BwReql2).
s2s(ServicelID2, ServicelDl, LatReq2l, BwReqg2l).
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FogBrainX Reasoning

1. First deployment, via a generate & test strategy

fogBrainX(A,Placement) :-
\+ deployment(A, , ), placement(A,Placement).



FogBrainX Reasoning

1. First deployment, via a generate & test strategy,
and
2. Management decisions, via continuous reasoning

fogBrainX(A,Placement) :-
\+ deployment(A, , ), placement(A,Placement).
fogBrainX(A,NewPlacement) :-
deployment(A,P,Alloc),
newServices(P,NewServices),
reasoningStep(P,Alloc,NotOkServices,[],0kPlacement),
append(NewServices,NotOkServices,ServicesToPlace),
placement(ServicesToPlace,OkPlacement,Alloc,NewPlacement),
allocatedResources(NewPlacement,NewAlloc),

retract(deployment(A, , )), assert(deployment(A,NewPlacement,NewAlloc)).



FogBrainX Reasoning Step

1. Ifthe service is removed, remove it form the placement

reasoningStep([on(S, )|Ps], (AllocHW,AllocBW),KOs,POk,StableP) :-
\+ service(S, , , ),

reasoningStep(Ps, (AllocHW,AllocBW),KOs,POk,StableP).



FogBrainX Reasoning Step

1. Ifthe service is removed, remove it form the placement
2. Ifthe service’s requirements are satisfied, keep it’s
placement

reasoningStep([on(S, )|Ps], (AllocHW,AllocBW),KOs,POk,StableP) :-
\+ service(S, , , ),
reasoningStep(Ps, (AllocHW,AllocBW),KOs,POk,StableP).
reasoningStep([on(S,N)|Ps], (AllocHW,AllocBW), KOs, POk,StableP) :-
nodeOk (S,N,POk,AllocHW), 1inksOk(S,N,POk,AllocBW),!,
reasoningStep(Ps, (AllocHW,AllocBW),KOs, [on(S,N)|POk],StableP).



FogBrainX Reasoning Step

1. Ifthe service is removed, remove it form the placement

2. Ifthe service’s requirements are satisfied, keep it’s
placement

3. Otherwise, re-place it

reasoningStep([on(S, )|Ps], (AllocHW,AllocBW),KOs,POk,StableP) :-
\+ service(S, , , ),
reasoningStep(Ps, (AllocHW,AllocBW),KOs,POk,StableP).
reasoningStep([on(S,N)|Ps], (AllocHW,AllocBW), KOs, POk,StableP) :-
nodeOk (S,N,POk,AllocHW), 1inksOk(S,N,POk,AllocBW),!,
reasoningStep(Ps, (AllocHW,AllocBW),KOs, [on(S,N)|POk],StableP).
reasoningStep([on(S, ) |Ps], (AllocHW,AllocBW),[S|KOs],POk,StableP) :-
reasoningStep(Ps, (AllocHW,AllocBW),KOs,POk,StableP).
reasoningStep([], ,[],P,P).



Default Policies

Node Requirements (SW, loT and cumulative HW)

nodeOk(S,N,P,AllocHW) :-
service(S,SWReqgs,HWReqgs,IoTReqs),
node (N, SWCaps,HWCaps,IoTCaps),
swReqsOk (SWReqgs, SWCaps),
thingReqsOk(IoTReqgs, IoTCaps),
hwOk (N, HWCaps ,HWReqs,P,Al1locHW)



Default Policies

Node Requirements (SW, loT and cumulative HW)

nodeOk(S,N,P,AllocHW) :-
service(S,SWReqgs,HWReqgs,IoTReqs),
node (N, SWCaps,HWCaps,IoTCaps),
swReqsOk (SWReqgs, SWCaps),
thingReqsOk(IoTReqgs, IoTCaps),
hwOk (N, HWCaps ,HWReqs,P,Al1locHW)

)

Links Requirements (latency and cumulative bandwidth)

linksOk(S,N,P,AllocBW) :-

findall((N1N2,ReqlLat), distinct(relevant(S,N,P,N1N2,ReqlLat)), N2Ns),
latencyOk(N2Ns),

findall(NIN2, distinct(member((N1IN2,ReqlLat),N2Ns)), N1N2s), bwOk(N1N2s,
AllocBW, [on(S,N)|P]).



FogBrainX Placer

Exploiting generate & test (with backtracking)
1. Checks node requirements for service S on node N

placement([S|Ss],P, (AllocHW,AllocBW),Placement) :-
nodeOk(S,N,P,AllocHW), 1inksOk(S,N,P,AllocBW),
placement(Ss,[on(S,N)|P], (AllocHW,AllocBW),Placement).
placement([],P, ,P).

2. Checks link requirements for all (placed) services
communicating with S
3. Repeated until all services have been placed



Continuous Reasoning as a
Booster
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SockShop Use Case
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SockShop Use Case

FogBrainX reduced execution
times by 20%
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FogBrainX Scalability Assessment

FogBrainX speed-up by 3000x
to 6000x




Continuous Reasoning
Assessment

- - . 100 - - - .
B Continuous Reasoning 213.22 EEm Continuous Reasoning %.77
200 W= Exhaustive Search B Exhaustive Search
178.34
175 4 80 -
150
2 60
n 125 n
g S
-
(%) m
& 100 - g
40 .
75 1
50 -
20 A
25
0- 0-
Execution Times ToMigrate%

(a) Average times. (b) Average migrations.



Continuous Reasoning
Assessment

FogArm saved 33% of
migrations and reduced
execution times by 15%




Conclusions

FogBrainX

* FogArm is a prototype of a next-
gen orchestrator for the

* FogBrainX s a declarative engine continuous QoS-compliant
to support application management of multiservice
management via continuous applications on geographically
reasoning, considering both distributed Cloud-loT
variations in the infrastructure infrastructures.

and changes in the application e Scales ub to tens of nodes and

requirements. hundreds of services saving 15%
* FogBrainX speed-up placement of execution time and migrating

decision-making execution time 33% fewer services.

in the order of 3000x to 6000x,

even in the presence of thousand

of nodes and high variation rates.

* Speed-up increases as the
infrastructure size increases. FogArI I l
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